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ON THE PRIMARITY OF H=-SPACES 

BY 

J. B O U R G A I N  

ABSTRACT 

It is proved that the poly-disc H ~ spaces H~(D ~) are primary. We use the 
representation of these spaces as the direct sum of certain polynomial spaces 
and some properties of the Fourier transforms of L ~(H ~) functions. 

I. Introduction 

In this note D denotes the open disc { z E C ; I z l < l } ,  [I the circle 

/z ~ r  equipped with Haar measure (denoted by m or ] I) and 

H = ( D " )  (m = 1, 2,. �9 �9 ) is the space of bounded analytic functions on D" .  This 

space identifies also with the subspace of L ~(1-I "~) of those functions with Fourier 

transform contained in (Z\Z_) ' ,  where Z_ are the strictly negative integers. 

It was shown in [4] that H=(D ")  is isomorphic to the space ( ~ = ,  H~(D"))=, 

i.e. the direct sum in/=-sense. Our purpose is to prove the following fact, which 

will be an application of the latter result: 

THEOREM. If H=(D r, ) decomposes as the direct sum of two spaces X, Y, then 

either X or Y is isomorphic to H=(D "). 

This answers affirmatively a question considered in [2]. Since the argument is 

completely analogous for m =>2, we only present the one-variable case for 

simplicity sake. In fact, P. Wojtaszczyk obtained more recently the isomorphism 

H=(Bm) ~ (Y,~=I H=(Bm))~ (B,, denoting the open unit ball in C ' )  and it is likely 

that the method explained below permits one to prove the above theorem for 

these spaces also. 

Let L~  = [1, e '~ e2'~ �9 �9 eN'~ for N = 0, 1, 2,. �9 �9 be the space of polynomials 

on II of degree =< N, equipped with L~-norm. In [1], the following isomorphism 

is proved (as a consequence of [4]): 
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As expected, we will first show how to derive the theorem from its finite- 

dimensional version. 

PROPOSITION. Given a positive integer n, there exists an integer N(n  ) such that 

if N >-_ N ( n )  and T is a linear operator on L~, the identity on L~ factorizes 

(boundedly w.r.t. 1[ TII) either through T or I -  T. Thus there are operators U, V 

Id L~ 

u 

factorizing 

T1 
LT~ 

, L ~  

> L~ 

w h e r e  Tl  : T or Tt = I - T and II UII II VII ~ C(ll TII + 1). 

To prove the proposition, we first reduce to the case where T is (almost) a 

multiplier and then settle this particular situation. Only this part of the proof is 

more delicate. 

2. Reduction to the finite dimensional question 

Denote  L~  by XN. We will use following fact: 

LEMMA 1. Given n E Z+, e > O, there is N(n,  e) such that if N >= N(n,  e) and 

E an n-dimensional subspace of XN, there is a subspace F of XN and a projection 

O from XN onto F such that 

(1) d(F, Xp)= 1 for some p >= n (where d is the Banach-Mazur  distance), 

(2) II o II = 1, 
(3) II Ox II < ~ IIx II for x E E. 

PROOF. F will be a space L~ where A={O, 1 , . . . , N } A ( d Z + r ) ,  for d = 

[N/n] and some r = 0, 1 , - . - ,  d - 1 .  Let O be the restriction to XN of the coset 

projection. 

For N large enough, it is possible to choose r so that (3) holds. Remark first 

that for fixed x @ XN 

N 

.__~ I(x, e'"~ V~llx II 
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and then average 

1 2 2 I(x, < I/xll. 
d r = 0  n ~ ,  

It remains to represent the elements of E using some Auerbach basis to 

conclude. 

RZMARKS. A previous random argument will be used again later on. Since X, 

factorizes boundedly through X, for p > 2n, condition (1) (resp. (2)) of Lemma 1 

can be replaced by d (F, X,)  =< C (resp. [10 II =< C). 

Our purpose is to deduce the theorem from the proposition. Let, more 

generally, T be an operator acting on (E:=oXN)=. 

LEMMA 2. Given e > O, there exists an operator T' on (E~=oX.) satisfying 

(1) T' (resp. I -  T ') factorizes  through T (resp. I -  T), 

(2) T' is "a lmost"  diagonal in the sense that IIT'-DII< ~, where D on 

(Y: =o X,)= satisfies D = ~]~( P, DP, )  ( P, = nth coordinate projection). 

PROOF. For each n the operators P.T ' (P~, . . . ,  P._l) and PoT'(P,+~, P.+2," �9 �9 ) 

must have small norm. The first condition is realized using Lemma 1. For the 

second, just observe that if S is a finite rank operator on (E XN)~ and e > 0, there 

is always an infinite subset I of Z+ so that II sP, II < ~, denoting P~ the obvious 

projection. Details are standard and left to the reader. 

Lemma 2 clearly reduces the factorization of the identity on (E X,)~ through T 

or I - T to the case where T is diagonal. But in this case the result immediately 

follows from the proposition stated above. 

3. Use of the F6j~r kernel 

n-I /I  e,,O 
I = n n 

is the F6j~r kernel and F, will also denote the corresponding convolution 

operator. 

LEMMA 3. The identity on L~ factorizes through the direct sum operator 

Fn ~ F~ acting on L T ~ L :. 

PROOF. If we define U : L ~ - - - > L ~ L ~  by U a = ( a , e ' n ~  and 

V : L T ~ L T---~ L ~ by V (a, ~ ) = a +fie '"~ clearly 

IdL= = V o (F. ~ F.)  o U. 
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LEMMA 4. Assume given e > 0, n E Z+, N >--_ N (n, e) and T an operator on 

L~. Then there exist operators T1, T2, T3 on L :  and an operator T' on 

L ~ (~ L ~ ~ L :  satisfying 

(1) T' (resp. I -  T') factorizes boundedly through T (resp. I -  T), 

(2) II r, II < Eli 7"11 (i : 1, 2, 3), 

(3) IIT'-(T, O T~O T.OII<e. 

PROOF. Iteration of the argument considered in the proof of Lemma 1 yields 

disjoint subsets A, (i = 1, 2, 3) of {0, 1,. �9 N} obtained by intersection with a 
suitable coset so that 

(4) ]A,l_---n (i = 1,2,3), 

(5) IIPA, TP~, II < ~/2 for i / y  (PA being the orthogonal projection). 
Denote  LT, by S, and let j, : S, ---> L~  be the injection. If T, = PA.Tj,, II r, 1t--< 

Ilzll. Define U:Sl (~S20S3- - ->L~ (resp. V:L~-- ->S1(~S2(~S3)by  U =  

11 + J2 AI- J3 (resp. V = PA, (~ PA2 (~ PA~) and let T' = VTU. Condition (3) easily 
follows from (5). 

Thus to prove the proposition, it suffices to factorize Fn. One can then 

indeed apply Lemma 4 and factorize F, (~Fn through T 1 0  T 2 0  T3 or 

(I  - T0 (~ (I - T~) G (I - T3). Thus, by Lemma 3, IdL= can be factorized through 
T o r I - T .  

4. Reduction to the multiplier case 

A multiplier on L~ is the restriction of a convolution operator. 

LEMMA 5. Given n E Z+, e > 0 there exists N (n, ~ ) such that if N >--_ N (n, e) 

and T an operator acting on L ~ (11T II bounded by some fixed constant), there exist 

a subset A of {0 ,1 , . . . ,N}  obtained by intersection with a coset, such that 

IIPATILx-T'II<~, where T' is a multiplier on L~, and [A]_->n. 

PROOF. We use again an averaging argument, considering sets 

Ad., = { 0 , 1 , . . . , N } N  ( d Z +  r) 

where 

(d, r) E ~ = {(d, r); [N/n 2] < d < [N/n] and r = 0, 1 , . . . ,  d - 1}. 

Thus we estimate 

( d , r ) E ~  m,n ~Ad, r 
m~n 



Vol. 45, 1983 

which can be rewritten as 

Since for fixed m 
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I~1-' ~ 2 ~ , I(Ze"~176247176 
O_--<rn--<_N [Nn- ]<d<[Nn- ] 

O_--<ld +rn_--<N 

~](Te'm~176 

we find a majoration of the order N-'%411TII. Hence, for N large enough, 

PA,.,T ILT,, I will be almost diagonal for some (d, r) ~ ~. 

The proof of the proposition is thus reduced to factorization of F, through T 

or I - T, where T is a multiplier on L~, N ~ N(n)  (the factorization norm must, 

of course, be controlled by 11 Ttl). 

5. Existence of certain arithmetic progressions 

The Fourier-Stieltjes transform of a function f E LI(II) is given by 

f (n)  = f f(O)e-'"~ (n E Z). 

A (Z) denotes as usual the algebra of those transforms and is equipped with the 

obvious norm. The purpose of this section is to prove the following fact: 

LEMMA 6. Given e > O, D < % n ~ Z+, there exists an integer N = N(e, B, n) 
such that for each ~ E A (Z), II ~ II < B, there is some arithmetic progression in 
{0,1,..., N} 

P : r < r + d < r + 2 d < . . . < r + n d  

satisfying 
(1) r < d ,  

(2) [ ~ - ~ , t < ~  for k, l EP. 

This lemma asserts an oscillation property for elements of A (Z). The reader 

will easily convince himself that the result does not hold for members of l~(Z) in 

general and hence is not a consequence of Van der Waerden's theorem [3]. 

By convolution, we can assume ~k = f ( k )  for k E { 0 , 1 , . . . , N }  where 

f E L'(n), I1[11, < 5B and Spec f c [ - 2N, 2N]. Define for 0 < ~- < 1 

f" = fXIIII>-NI and f = fX~III~*NI. 
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It will suffice to exhibit a progression P satisfying (1) of Lemma 6 and 

O < K < r < l s u c h  that 

(3) IIf - f ~  - f ~  II, < e/6 ,  
(4) ] f ' ( k ) - f ' ( 1 ) [ <  e/3 for k, l  ~ e ,  

(5) I f . ( k ) t < E / 6  for k CP .  

We will show that if r is not too small w.r.t. N, it is possible to find a 

progression P and 0 < K < ~-, K = K (~-, n, e ) such that (4), (5) hold. Iterating then 

this principle leads to a decreasing sequence 

I 
: K o ~  K j ~  K 2 ~ ' ' "  

which (for N large enough) can be constructed long enough to yield (3) for some 

choice , r  : K~, K = K,+I. 

First, an integer d will be found so that 

p N < d <  N with p = p ( r , n , e )  
n 

and (4) is verified for each translation P = O + r where O = {0, 1,. �9 n}. d. 

Then, it will be shown that for K small enough (5) will hold for some 0 =< r < d. 

Denote  by K the De la Vall6e Poussin kernel with transform / (  = 1 on 

[ - 2N, 2 N ] , / (  = 0 outside [ - 3N, 3N]. For t E I I ,  let 6, be the Dirac measure at 

the point t. 

LEMMA 7. For ~1 > 0 there are points tt," " ", tb E 11 and scalars (c j ) l~b  such 

that 

(1) b <=b(~',n,B), 

(2) Xlcjl =llfll,, 
(3) II(f T - g l l ,  < 7.  

PROOF. For 0 E F I ,  take Ko(q,)=K(O+~O). Partition FI in intervals I. of 

length yN 1 where 3, > 0 will be defined later. Choose 0~ E Io for each a. Then 

let', K)- f,o F K.o[ <-_ I,o JF(O)IttK~176176 CB , 
(where C denotes a numerical constant). For 3' small enough, an estimation by 7/ 

is obtained in the previous line. It remains to bound [JI where J = {a ; f ' g  0 on 

1.}. 
If t E L and If(t)[ > ~-N, then clearly (since Specf  C [ - 2 N , 2 N ] )  

f lfl >- v N - ' ( l f ( t ) l -  'llTf]l=) --> 3,(r - 103,B) > �89 
a 
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if 3, < r/2OB. Hence IJI < 2('y~') '11s proving the lemma. 

An entropy argument yields an integer d so that p'(r, rt, B ) N  < d < N / n  and 

l e ' " ; - l l < n  fo r j  = 1, . . . ,b .  

For k, l in any translation P of 0 defined above 

If~(k)-f~(/)l=<2n + • [c,l l&(k)-a,,(1)l<=2~ +llfll,n~ <e/3 
l<l<b 

for appropriate choice of r/. 

To realize the second step, i.e. the choice of 0 -<_r < d  and K, again an 

averaging argument can be applied: 

1 < n  , < n  
3o~<a  E l)~(k)12= d 1}f- ~=-~KNIIf t l ,<5np- 'Bt~.  

Nr k ~ O + r  

Take r = e "-p/lOOnB. Then some 0 _-< r < d can be found such that P fulfils (5). 

6. End of the proof of the proposition 

Assume thus T a multiplier on L~ induced by some element sC@A(Z) 

(11 s c I1 < B, B being some numerical constant). Fix n E Z+, e > 0 and (for N large 

enough) apply Lemma 6 to obtain the progression P. Let us consider the 

following operators: 

U:L~----~L;, U s =  ~ &(j')e '~176 
O<=l<=n 

V : L ~--> L ~,, obtained by convolution with K, K (0) = F, (e ,do)e'r~ 

W :L~---> L~, Wa = a ( O / d ) e  -''~ 

Notice that (1) of Lemma 6 asserts that V ranges in L~,. Define T ' =  T or 

T ' = I - T  in order to ensure I~:~-o'1 < e  for k E P ,  where ~rEC,  [o'1_->�89 

Clearly for a E L~ 

and 

( W V T ' U ) a =  • ~ " ' ^ ol(j)~a+,f . ( j )e  "~ 
O'<i~n 

II(WVT'U)~ - ~f .  (~)11~ ~ (n + 1)~ lien (~)tl~. 

Choosing e < 1/10n, a standard perturbation argument yields a factorizatibn of 

F, through T'. 
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7. Remarks 

(1) It is easily seen that the proof of the proposition stated in the introduction 

is specific for L~-spaces and does not work in the L~.-case (p < 2). 

(2) Lemma 6 has the following dual version for functions f on II with 

absolutely converging Fourier series. If f = Z f ( j )e  '~ Ilflla,,,, = z I f(J)l. A similar 

argument as used to obtain Lemma 6 shows the following fact: 

There is a function o-(6, n,e)such that if IlfllA,l,,-_< 1 and I=[0,,,0,] is an 

interval in II, of length => 3, there exists a progression P in I 

P ={O,O + h, . . . ,O + nh} 

such that I 0 - 0ol < I h I, I h I > o, and f has oscillation at most e on P. 
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