ON THE PRIMARITY OF H^{∞} -SPACES

BY

J. BOURGAIN

ABSTRACT

It is proved that the poly-disc H^{z} spaces $H^{z}(D^{m})$ are primary. We use the representation of these spaces as the direct sum of certain polynomial spaces and some properties of the Fourier transforms of $L^{1}(\Pi^{m})$ functions.

1. Introduction

In this note D denotes the open disc $\{z \in \mathbb{C}; |z| < 1\}$, Π the circle $\{z \in \mathbb{C}; |z| = 1\}$ equipped with Haar measure (denoted by m or | |) and $H^{*}(D^{m})$ ($m = 1, 2, \cdots$) is the space of bounded analytic functions on D^{m} . This space identifies also with the subspace of $L^{*}(\Pi^{m})$ of those functions with Fourier transform contained in $(\mathbb{Z}\backslash\mathbb{Z}_{-})^{m}$, where \mathbb{Z}_{-} are the strictly negative integers.

It was shown in [4] that $H^{\infty}(D^m)$ is isomorphic to the space $(\sum_{n=1}^{\infty} H^{\infty}(D^m))_{\infty}$, i.e. the direct sum in l^{∞} -sense. Our purpose is to prove the following fact, which will be an application of the latter result:

THEOREM. If $H^{*}(D^{m})$ decomposes as the direct sum of two spaces X, Y, then either X or Y is isomorphic to $H^{*}(D^{m})$.

This answers affirmatively a question considered in [2]. Since the argument is completely analogous for $m \ge 2$, we only present the one-variable case for simplicity sake. In fact, P. Wojtaszczyk obtained more recently the isomorphism $H^{\infty}(B_m) \sim (\sum_{n=1}^{\infty} H^{\infty}(B_m))_{\infty}$ (B_m denoting the open unit ball in \mathbb{C}^m) and it is likely that the method explained below permits one to prove the above theorem for these spaces also.

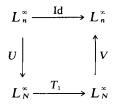
Let $L_N^{\infty} = [1, e^{i\theta}, e^{2i\theta}, \dots, e^{Ni\theta}]_{\infty}$ for $N = 0, 1, 2, \dots$ be the space of polynomials on Π of degree $\leq N$, equipped with L^{∞} -norm. In [1], the following isomorphism is proved (as a consequence of [4]):

Received February 12, 1983

$$H^{\infty} \sim \left(\sum_{N=0}^{\infty} L_{N}^{\infty}\right)_{\infty}.$$

As expected, we will first show how to derive the theorem from its finitedimensional version.

PROPOSITION. Given a positive integer n, there exists an integer N(n) such that if $N \ge N(n)$ and T is a linear operator on L_N^* , the identity on L_n^* factorizes (boundedly w.r.t. ||T||) either through T or I - T. Thus there are operators U, V factorizing



where $T_1 = T$ or $T_1 = I - T$ and $||U|| ||V|| \le C(||T|| + 1)$.

To prove the proposition, we first reduce to the case where T is (almost) a multiplier and then settle this particular situation. Only this part of the proof is more delicate.

2. Reduction to the finite dimensional question

Denote L_N^{∞} by X_N . We will use following fact:

LEMMA 1. Given $n \in \mathbb{Z}_+$, $\varepsilon > 0$, there is $N(n, \varepsilon)$ such that if $N \ge N(n, \varepsilon)$ and E an n-dimensional subspace of X_N , there is a subspace F of X_N and a projection Q from X_N onto F such that

- (1) $d(F, X_p) = 1$ for some $p \ge n$ (where d is the Banach-Mazur distance),
- (2) ||Q|| = 1,
- (3) $||Qx|| \leq \varepsilon ||x||$ for $x \in E$.

PROOF. F will be a space L^{∞}_{Λ} where $\Lambda = \{0, 1, \dots, N\} \cap (d\mathbf{Z}+r)$, for d = [N/n] and some $r = 0, 1, \dots, d-1$. Let Q be the restriction to X_N of the coset projection.

For N large enough, it is possible to choose r so that (3) holds. Remark first that for fixed $x \in X_N$

$$\sum_{n=0}^{N} |\langle x, e^{in\theta} \rangle| \leq \sqrt{N} ||x||$$

Vol. 45, 1983

and then average

$$\frac{1}{d}\sum_{r=0}^{d-1}\sum_{n\in\Lambda_r}|\langle x,e^{in\theta}\rangle|\leq \frac{n}{\sqrt{N}}||x||.$$

It remains to represent the elements of E using some Auerbach basis to conclude.

REMARKS. A previous random argument will be used again later on. Since X_n factorizes boundedly through X_p for p > 2n, condition (1) (resp. (2)) of Lemma 1 can be replaced by $d(F, X_n) \leq C$ (resp. $||Q|| \leq C$).

Our purpose is to deduce the theorem from the proposition. Let, more generally, T be an operator acting on $(\sum_{n=0}^{\infty} X_n)_{\infty}$.

LEMMA 2. Given $\varepsilon > 0$, there exists an operator T' on $(\sum_{n=0}^{\infty} X_n)$ satisfying (1) T' (resp. I - T') factorizes through T (resp. I - T),

(2) T' is "almost" diagonal in the sense that $||T' - D|| < \varepsilon$, where D on $(\sum_{n=0}^{\infty} X_n)_{\infty}$ satisfies $D = \bigoplus (P_n D P_n)$ ($P_n = n$ th coordinate projection).

PROOF. For each *n* the operators $P_nT'(P_1, \dots, P_{n-1})$ and $P_nT'(P_{n+1}, P_{n+2}, \dots)$ must have small norm. The first condition is realized using Lemma 1. For the second, just observe that if S is a finite rank operator on $(\Sigma X_N)_{\infty}$ and $\varepsilon > 0$, there is always an infinite subset I of \mathbb{Z}_+ so that $||SP_I|| < \varepsilon$, denoting P_I the obvious projection. Details are standard and left to the reader.

Lemma 2 clearly reduces the factorization of the identity on $(\sum X_n)_{\infty}$ through T or I - T to the case where T is diagonal. But in this case the result immediately follows from the proposition stated above.

3. Use of the Féjèr kernel

$$F_n(\theta) = \sum_{j=-n}^n \frac{n-|j|}{n} e^{ij\theta}$$

is the Féjèr kernel and F_n will also denote the corresponding convolution operator.

LEMMA 3. The identity on L_n^{∞} factorizes through the direct sum operator $F_n \bigoplus F_n$ acting on $L_n^{\infty} \bigoplus L_n^{\infty}$.

PROOF. If we define $U: L_n^{\infty} \to L_n^{\infty} \oplus L_n^{\infty}$ by $U\alpha = (\alpha, e^{in\theta}\bar{\alpha})$ and $V: L_n^{\infty} \oplus L_n^{\infty} \to L_n^{\infty}$ by $V(\alpha, \beta) = \alpha + \bar{\beta}e^{in\theta}$, clearly

$$\mathrm{Id}_{L_n^{\infty}} = V \circ (F_n \bigoplus F_n) \circ U.$$

J. BOURGAIN

LEMMA 4. Assume given $\varepsilon > 0$, $n \in \mathbb{Z}_+$, $N \ge N(n, \varepsilon)$ and T an operator on L_N^{∞} . Then there exist operators T_1 , T_2 , T_3 on L_n^{∞} and an operator T' on $L_n^{\infty} \oplus L_n^{\infty} \oplus L_n^{\infty}$ satisfying

(1) T' (resp. I - T') factorizes boundedly through T (resp. I - T),

(2) $||T_i|| < C ||T||$ (*i* = 1, 2, 3),

(3) $||T'-(T_1\oplus T_2\oplus T_3)|| < \varepsilon.$

PROOF. Iteration of the argument considered in the proof of Lemma 1 yields disjoint subsets Λ_i (i = 1, 2, 3) of $\{0, 1, \dots, N\}$ obtained by intersection with a suitable coset so that

(4) $|\Lambda_i| \ge n$ (i = 1, 2, 3),

(5) $||P_{\Lambda_i}TP_{\Lambda_j}|| < \varepsilon/2$ for $i \neq j$ (P_{Λ} being the orthogonal projection).

Denote $L_{\Lambda_i}^{\infty}$ by S_i and let $j_i : S_i \to L_N^{\infty}$ be the injection. If $T_i = P_{\Lambda_i} T j_i$, $||T_i|| \le ||T||$. Define $U : S_1 \bigoplus S_2 \bigoplus S_3 \to L_N^{\infty}$ (resp. $V : L_N^{\infty} \to S_1 \bigoplus S_2 \bigoplus S_3$) by $U = j_1 + j_2 + j_3$ (resp. $V = P_{\Lambda_1} \bigoplus P_{\Lambda_2} \bigoplus P_{\Lambda_3}$) and let T' = VTU. Condition (3) easily follows from (5).

Thus to prove the proposition, it suffices to factorize F_n . One can then indeed apply Lemma 4 and factorize $F_n \oplus F_n$ through $T_1 \oplus T_2 \oplus T_3$ or $(I - T_1) \oplus (I - T_2) \oplus (I - T_3)$. Thus, by Lemma 3, $Id_{L_n^\infty}$ can be factorized through T or I - T.

4. Reduction to the multiplier case

A multiplier on L_{Λ}^{∞} is the restriction of a convolution operator.

LEMMA 5. Given $n \in \mathbb{Z}_+$, $\varepsilon > 0$ there exists $N(n, \varepsilon)$ such that if $N \ge N(n, \varepsilon)$ and T an operator acting on $L_N^{\infty}(||T||$ bounded by some fixed constant), there exist a subset Λ of $\{0, 1, \dots, N\}$ obtained by intersection with a coset, such that $||P_{\Lambda}T||_{L_{\Lambda}^{\infty}} - T'|| < \varepsilon$, where T' is a multiplier on L_{Λ}^{∞} , and $|\Lambda| \ge n$.

PROOF. We use again an averaging argument, considering sets

$$\Lambda_{d,r} = \{0, 1, \cdots, N\} \cap (d\mathbb{Z} + r)$$

where

$$(d,r) \in \mathcal{P} = \{(d,r); [N/n^2] < d < [N/n] \text{ and } r = 0, 1, \dots, d-1\}.$$

Thus we estimate

$$|\mathcal{P}|^{-1} \sum_{(d,r)\in\mathcal{P}} \sum_{\substack{m,n\in\Lambda_{d,r}\\m\neq n}} |\langle Te^{im\theta}, e^{in\theta} \rangle|$$

H*-SPACES

which can be rewritten as

$$\left|\mathscr{P}\right|^{-1}\sum_{\substack{0\leq m\leq N\\0\leq jd+m\leq N}}\sum_{\substack{[Nn^{-2}]< d<[Nn^{-1}]\\0\leq jd+m\leq N}}\left|\langle Te^{im\theta},e^{i(jd+m)\theta}\rangle\right|.$$

Since for fixed m

$$\sum_{k} |\langle Te^{im\theta}, e^{ik\theta} \rangle| \leq ||T|| N^{1/2}$$

we find a majoration of the order $N^{-1/2}n^4 ||T||$. Hence, for N large enough, $P_{\Lambda_{d,r}}T|_{L^{\infty}_{\Lambda_{d,r}}}$ will be almost diagonal for some $(d, r) \in \mathcal{P}$.

The proof of the proposition is thus reduced to factorization of F_n through T or I - T, where T is a multiplier on L_N^{∞} , $N \ge N(n)$ (the factorization norm must, of course, be controlled by ||T||).

5. Existence of certain arithmetic progressions

The Fourier-Stieltjes transform of a function $f \in L^{1}(\Pi)$ is given by

$$\hat{f}(n) = \int f(\theta) e^{-in\theta} m(d\theta) \qquad (n \in \mathbb{Z}).$$

 $A(\mathbf{Z})$ denotes as usual the algebra of those transforms and is equipped with the obvious norm. The purpose of this section is to prove the following fact:

LEMMA 6. Given $\varepsilon > 0$, $D < \infty$, $n \in \mathbb{Z}_+$, there exists an integer $N = N(\varepsilon, B, n)$ such that for each $\xi \in A(\mathbb{Z})$, $\|\xi\| < B$, there is some arithmetic progression in $\{0, 1, \dots, N\}$

$$P: r < r + d < r + 2d < \cdots < r + nd$$

satisfying

(1)
$$r < d$$
,

(2) $|\xi_k - \xi_l| < \varepsilon$ for $k, l \in P$.

This lemma asserts an oscillation property for elements of $A(\mathbf{Z})$. The reader will easily convince himself that the result does not hold for members of $l^{\infty}(\mathbf{Z})$ in general and hence is not a consequence of Van der Waerden's theorem [3].

By convolution, we can assume $\xi_k = \hat{f}(k)$ for $k \in \{0, 1, \dots, N\}$ where $f \in L^1(\Pi)$, $||f||_1 < 5B$ and Spec $f \in [-2N, 2N]$. Define for $0 < \tau < 1$

$$f^{\tau} = f\chi_{[|f| > \tau N]}$$
 and $f_{\tau} = f\chi_{[|f| \le \tau N]}$.

J. BOURGAIN

It will suffice to exhibit a progression P satisfying (1) of Lemma 6 and $0 < \kappa < \tau < 1$ such that

- (3) $||f f^{\tau} f_{\kappa}||_{1} < \varepsilon/6$,
- (4) $|\hat{f}^{\tau}(k) \hat{f}^{\tau}(1)| < \varepsilon/3$ for $k, l \in P$,
- (5) $|\hat{f}_{\kappa}(k)| < \varepsilon/6$ for $k \in P$.

We will show that if τ is not too small w.r.t. N, it is possible to find a progression P and $0 < \kappa < \tau$, $\kappa = \kappa(\tau, n, \varepsilon)$ such that (4), (5) hold. Iterating then this principle leads to a decreasing sequence

$$\frac{1}{2} = \kappa_0 > \kappa_1 > \kappa_2 > \cdots$$

which (for N large enough) can be constructed long enough to yield (3) for some choice $\tau = \kappa_s$, $\kappa = \kappa_{s+1}$.

First, an integer d will be found so that

$$\rho N < d < \frac{N}{n}$$
 with $\rho = \rho(\tau, n, \varepsilon)$

and (4) is verified for each translation P = Q + r where $Q = \{0, 1, \dots, n\} \cdot d$.

Then, it will be shown that for κ small enough (5) will hold for some $0 \le r < d$.

Denote by K the De la Vallée Poussin kernel with transform $\tilde{K} = 1$ on [-2N, 2N], $\hat{K} = 0$ outside [-3N, 3N]. For $t \in \Pi$, let δ_t be the Dirac measure at the point t.

LEMMA 7. For $\eta > 0$ there are points $t_1, \dots, t_b \in \Pi$ and scalars $(c_j)_{1 \le j \le b}$ such that

- (1) $b \leq b(\tau, \eta, B)$,
- (2) $\Sigma |c_j| \leq ||f||_1$,
- (3) $\|(f^{\tau} \sum_{1 \leq j \leq b} c_j \delta_{t_j}) * K\|_1 < \eta.$

PROOF. For $\theta \in \Pi$, take $K_{\theta}(\psi) = K(\theta + \psi)$. Partition Π in intervals I_a of length γN^{-1} where $\gamma > 0$ will be defined later. Choose $\theta_a \in I_a$ for each a. Then

$$\left\| (f^{\tau} * K) - \sum_{a} \int_{I_{a}} f^{\tau} \cdot K_{\theta_{a}} \right\|_{1} \leq \sum_{a} \int_{I_{a}} |f^{\tau}(\theta)| \| K_{\theta} - K_{\theta_{a}} \|_{1} \leq CB\gamma$$

(where C denotes a numerical constant). For γ small enough, an estimation by η is obtained in the previous line. It remains to bound |J| where $J = \{a; f^{\tau} \neq 0 \text{ on } I_a\}$.

If $t \in I_a$ and $|f(t)| > \tau N$, then clearly (since Spec $f \subset [-2N, 2N]$)

$$\int_{I_a} |f| \geq \gamma N^{-1} (|f(t)| - \gamma N^{-1} \| \nabla f \|_{\infty}) \geq \gamma (\tau - 10\gamma B) > \frac{1}{2} \gamma \tau$$

H*-SPACES

if $\gamma < \tau/20B$. Hence $|J| < 2(\gamma \tau)^{-1} ||f||_1$, proving the lemma.

An entropy argument yields an integer d so that $\rho'(\tau, \eta, B)N < d < N/n$ and

$$|e^{idt_j}-1| < \eta \qquad \text{for } j=1,\cdots,b.$$

For k, l in any translation P of Q defined above

$$|\hat{f}^{\tau}(k) - \hat{f}^{\tau}(l)| \leq 2\eta + \sum_{1 \leq j \leq b} |c_j| |\hat{\delta}_{i_j}(k) - \hat{\delta}_{i_j}(l)| \leq 2\eta + ||f||_1 n\eta < \varepsilon/3$$

for appropriate choice of η .

To realize the second step, i.e. the choice of $0 \le r < d$ and κ , again an averaging argument can be applied:

$$\frac{1}{d} \sum_{0 \le r < d} \sum_{k \in Q+r} |\hat{f}_{\kappa}(k)|^2 \le \frac{n}{d} \|f_{\kappa}\|_2^2 \le \frac{n}{d} \kappa N \|f\|_1 < 5n\rho^{-1}B\kappa.$$

Take $\kappa = \epsilon^2 \rho / 100 nB$. Then some $0 \le r < d$ can be found such that P fulfils (5).

6. End of the proof of the proposition

Assume thus T a multiplier on L_N^* induced by some element $\xi \in A(\mathbb{Z})$ ($||\xi|| < B, B$ being some numerical constant). Fix $n \in \mathbb{Z}_+$, $\varepsilon > 0$ and (for N large enough) apply Lemma 6 to obtain the progression P. Let us consider the following operators:

$$U: L_n^{\infty} \to L_N^{\infty}, \qquad U\alpha = \sum_{0 \leq j \leq n} \hat{\alpha}(j) e^{i(jd+r)\theta},$$

 $V: L_N^{\infty} \to L_P^{\infty}$, obtained by convolution with K, $K(\theta) = F_n(e^{id\theta})e^{ir\theta}$,

$$W: L_P^{\infty} \to L_n^{\infty}, \qquad W\alpha = \alpha (\theta/d) e^{-ir\theta/d}.$$

Notice that (1) of Lemma 6 asserts that V ranges in L_P^{∞} . Define T' = T or T' = I - T in order to ensure $|\xi'_k - \sigma| < \varepsilon$ for $k \in P$, where $\sigma \in \mathbb{C}$, $|\sigma| \ge \frac{1}{2}$. Clearly for $\alpha \in L_n^{\infty}$

$$(WVT'U)\alpha = \sum_{0 \leq j \leq n} \hat{\alpha}(j)\xi'_{jd+r}\hat{F}_n(j)e^{ij\theta}$$

and

$$\|(WVT'U)\alpha - \sigma F_n(\alpha)\|_{\infty} \leq (n+1)\varepsilon \|F_n(\alpha)\|_{\infty}.$$

Choosing $\varepsilon < 1/10n$, a standard perturbation argument yields a factorization of F_n through T'.

7. Remarks

(1) It is easily seen that the proof of the proposition stated in the introduction is specific for L_n^{∞} -spaces and does not work in the L_n^p -case $(p < \infty)$.

(2) Lemma 6 has the following dual version for functions f on Π with absolutely converging Fourier series. If $f = \sum \hat{f}(j)e^{i\theta}$, $||f||_{A(\Pi)} = \sum |\hat{f}(j)|$. A similar argument as used to obtain Lemma 6 shows the following fact:

There is a function $\sigma(\delta, n, \varepsilon)$ such that if $||f||_{A(\Pi)} \leq 1$ and $I = [\theta_0, \theta_1]$ is an interval in Π , of length $\geq \delta$, there exists a progression P in I

$$P = \{\theta, \theta + h, \cdots, \theta + nh\}$$

such that $|\theta - \theta_0| < |h|$, $|h| > \sigma$ and f has oscillation at most ε on P.

REFERENCES

1. J. Bourgain and A. Pelczynski, in preparation.

2. P. Casazza, Complemented subspaces of A, H^1 and H', Proc. on Linear Operators and Function Theory, Vol. 11, Leningrad, 1978, pp. 20–22.

3. D. Van der Waerden, Beweis eines Baudet'schen Vermutung, Nieuw Arch. Wiskd 15 (1927), 212-216.

4. P. Wojtaszczyk, Decompositions of H^p spaces, Duke Math. J. 46 (1979), 635-644.

DEPARTMENT OF MATHEMATICS

VRIJE UNIVERSITEIT BRUSSEL

PLEINLAAN 2, F7 1050 BRUSSELS, BELGIUM